Calcium dynamics and homeostasis in a mathematical model of the principal cell of the cortical collecting tubule
نویسندگان
چکیده
Calcium (Ca) dynamics are incorporated into a mathematical model of the principal cell in the cortical collecting tubule developed earlier in Strieter et al. (1992a. Am. J Physiol. 263:F1063-1075). The Ca components are modeled after the Othmer-Tang model for IP(3)-sensitive calcium channels (1993, in Experimental and Theoretical Advances in Biological Pattern Formation, 295-319). There are IP(3)-sensitive Ca channels and ATP-driven pumps on the membrane of the endoplasmic reticulum. Calcium enters the cell passively down its electrochemical gradient. A Ca pump and Na/Ca exchange in the basolateral membrane are responsible for the extrusion of cytoplasmic calcium. Na/Ca exchange can also operate in reverse mode to transport Ca into the cell. Regulatory effects of cytoplasmic Ca on the apical Na channels are modeled after experimental data that indicate apical Na permeability varies inversely with cytoplasmic Ca concentration. Numerical results on changes in intracellular Ca caused by decreasing NaCl in the bath and the lumen are similar to those from experiments in Bourdeau and Lau (1990. Am. J Physiol. 258:F1497-1503). This match of simulation and experiment requires the synergistic action of the Na/Ca exchanger and the Ca regulated apical Na permeability. In a homogeneous medium, cytoplasmic Ca becomes oscillatory when extracellular Na is severely decreased, as observed in experiments of cultured principal cells (Koster, H., C. van Os and R. Bindels. 1993. Kidney Int.43:828-836). This essentially pathological situation arises because the hyperpolarization of membrane potential caused by Na-free medium increases Ca influx into the cell, while the Na/Ca exchanger is inactivated by the low extracellular Na and can no longer move Ca out of the cell effectively. The raising of the total amount of intracellular Ca induces oscillatory Ca movement between the cytoplasm and the endoplasmic reticulum. Ca homeostasis is investigated under the condition of severe extracellular Ca variations. As extracellular Ca is decreased, Ca regulation is greatly impaired if Ca does not regulate apical ionic transport. The simulations indicate that the Na/Ca exchanger alone has only limited regulatory capacity. The Ca regulated apical sodium or potassium permeability are essential for regulation of cytoplasmic Ca in the principal cell of the cortical collecting tubule.
منابع مشابه
A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient.
In assessing disorders of potassium excretion, urine composition is used to calculate the transtubular gradient (TTKG), as an estimate of tubule fluid concentration, at a point when the fluid was last isotonic to plasma, namely, within the cortical collecting duct (CCD). A mathematical model of the CCD has been developed, consisting of principal cells and alpha- and beta-intercalated cells, and...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملVasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. Stimulation of cytosolic free calcium and inositol phosphate production via coupling to a pertussis toxin substrate.
The effects of arginine vasopressin (AVP) on the cytosolic free calcium concentration ([Ca2+]f) were examined in freshly immunodissected rabbit cortical collecting tubule cells using fluorescent Ca2+ indicators fura-2 and indo-1. The addition of AVP to a cell suspension resulted in a rapid and transient increase in the [Ca2+]f. The 1-deamino-8-D-AVP (dDVP), a V2 receptor agonist of AVP that sti...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 107 شماره
صفحات -
تاریخ انتشار 1996